

CONTROL OF MICROSTRUCTURE EVOLUTION DURING SPUTTERDEPOSITION

Ivan Petrov

Materials Research Laboratory, University of Illinois at Urbana-Champaign, USA Department of Physics, Chemistry, and Biology, Linköping University, Sweden

petrov@illinois.edu

RWTH Aachen University February 11, 2025

1.	Nucleation and growth
	Surface structure: terraces, steps, kinks, vacancies
	Film growth processes-nucleation, coalescence, competitive grain growth, recrystallization
	Zone diagrams
	Epitaxial growth
	Effects of reactive species.
2.	Use of low-energy gas ion bombardment to control microstructure during low temperature film growth Effects of sputtered atoms energy
	Effects of gas-ion energy
	 Use of high fluxes of low-energy gas ions, low-temperature sputter epitaxy
3.	Use of low-energy metal-ion bombardment to control microstructure during low temperature film growth
	High Power Impulse Magnetron Sputtering (HiPIMS), source of energetic target atoms ions
	Hybrid HiPIMS/DCMS processes
	• Light metal ions (Al ⁺ , Si ⁺): synthesis of highly metastable Transition Metal Nitride (TMN) coatings
	 Heavy metal ions (Ta⁺, W⁺): low-T synthesis of dense, hard, low-stress TMN coatings
4.	Kinetic roughing and surface facet formation
5.	Texture inheritance
6.	Metal-ion etch and adhesion control
7.	Self-organized nanostructure formation
	 Thermal segregation and renucleation – random nanocomposites
	 Ion-assisted segregation – highly-oriented nanocomposites; equiaxed to columnar transition
8.	Modeling TiN(001) film growth by classical molecular dynamics

nitride	Group	a₀ [nm]	m*	T _m [°C]	T _s /T _m	ξ ₁ [nm]	ξ [nm]	E [GPa]	H [GPa]	ρ _{300K} [µΩ-cm]	RRR
ScN ⁽¹⁾	III	0.4501	0.069	2735	0.34	57	15	356	21±1.1	2000	
TiN ⁽²⁾	IVB	0.4240	0.007	2930	0.30	142	86	445±38	20±0.8	12.4	12
ZrN ⁽³⁾	IVB	0.4573	0.086	2980	0.18	161	18	450±25	22.7±1.7	12.0	15
HfN ⁽⁴⁾	IVB	0.4524	0.074	3250	0.26	182	22	450±9	25.2±0.7	14.2	4
CeN ⁽⁵⁾	IV	0.5043	0.198	2830	0.34	26	7	330±16	15.0±0.9	68.5	2.3
VN ⁽⁶⁾	VB	0.4130	0.009	2323	0.30	159	57	356±12	14.3±1.0	35.0	16
δ-TaN ⁽⁷⁾	VB	0.4351	0.028	3090	0.26	104	21	445±12	31.5±1.0	185	
 (3) A. B. (4) HS. (5) TY. L (6) A. B. (7) CS. (8) D. Ga 	Mei, B., M. Seo, TY. L Lee, D. Gall, Mei, A. Rocl Shin, YW. II, CS. Shi	Sardela, J. N ee, I. Petrov, CS. Shin, I kett, L. Hultm Kim, N. Hellç n, T. Spila, M	. Eckstein, I J. E. Greer N. Hellgren, an, J.E. Gru gren, D. Gal . Odén, M.	L. Hultman, A he, and D. Ga I. Petrov, an eene, and I. I, I. Petrov, a J. H. Senna,	Rockett, I III, JAP 97 , d J. E. Gree Petrov, JAF nd J. E. Green J. E. Green	. Petrov, and 083521 (200 ene, JAP 94 , 2 115 , 21490 eene, JVSTA ee, and I. Pet	J. E. Green 5). 921 (2003). 8 (2014); 20, 2007 (2 rov, JAP 91,	ne, JVSTA 3 2002). , 3589 (2002	I, 061516 (2)).	013).	
	т:	AI.N. Hf	_{1-x} Al _x N,	TiN Ti _{1-x} W _x N	,, VN _x , 2 I, Sc _{1-x} 1	ZrN _x , VN ī _x N, Ti ₁₋	l _x _x Ce _x N, \	V _{1-x} Mo _x N	N, V _{1-x} W,	"N	

Transition metal diborides

J Vac. Sci. Technol. A 37, 031506 (2019).

Modeling TiN(001) Film Growth by Classical Molecular Dynamics

Diffusion on an island Descent mechanisms Residence time (ns) Direct Single No Double descent hop push-out push-out Ti adatom 14% 0% 72% 14% 1.15 92% N adatom 4% 4% 0% 1.96 **TiN dimer** 22% 36% 36% 6% 0.99 0% 0% TiN₂ trimer 14% 86% 0.72 D Edström, DG Sangiovanni, L Hultman, I Petrov, JE Greene, V Chirita, Thin Solid Films 589 (2015) 133

