

FUNDAMENTALS OF SPUTTER DEPOSITION

Ivan Petrov

Materials Research Laboratory, University of Illinois at Urbana-Champaign, USA Department of Physics, Chemistry, and Biology, Linköping University, Sweden

petrov@illinois.edu

RWTH Aachen University February 10, 2025

1

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Exampl	es		G
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			t _{ML}			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		25°C	1000°C	25°C	1000°C	25°C
$\label{eq:linear_states} \begin{array}{ c c c c c } \hline 1 \mbox{ Torr (133 Pa)} & 70 \mu m & 300 \mu m & 3.2 \mbox{ \times10^{20}$} & 1.6 \mbox{ \times10^{20}$} & 3.0 \mu s \\ \hline 1 m \mbox{ Torr (0.133)} & 7 cm & 300 m & 3.2 \mbox{ \times10^{17}$} & 1.6 \mbox{ \times10^{17}$} & 3.0 m s \\ \hline 10^{-6} \mbox{ Torr } & 70 m & 300 m & 3.2 \mbox{ \times10^{14}$} & 1.6 \mbox{ \times10^{14}$} & 3.0 s \\ \hline 10^{-11} \mbox{ Torr } & 7,000 m & 30,000 m & 3.2 \mbox{ \times10^{9}$} & 1.6 \mbox{ \times10^{9}$} & 84 hours \\ \hline 10^{-11} \mbox{ Torr } & 7,000 m & 30,000 m & 3.2 \mbox{ \times10^{9}$} & 1.6 \mbox{ \times10^{9}$} & 84 hours \\ \hline \lambda : \mbox{ mean free path} \\ J: \mbox{ flux of the atoms on sample/walls } t_{ML}: \mbox{ time to form a monolayer (ML) at sticking probability of 1 } \\ \hline diameter \mbox{ of a gas atom \sim 3 \times10^{-8} cm; \mbox{ area of a gas atom \sim $10^{-15} cm^2$} \\ \hline mbox{ one monolayer \sim $10^{15} cm^{-2}$} \end{array}$	1 atm (10 ⁵ Pa)	100 nm	400 nm	2.4 ×10 ²³	1.2 ×10 ²³	4 ns
$\label{eq:linear_state} \begin{array}{ c c c c c } \hline 1 & mTorr \ (0.133) & 7 \ cm & 30 \ cm & 3.2 \times 10^{17} & 1.6 \times 10^{17} & 3.0 \ ms \\ \hline 10^{-6} \ Torr & 70 \ m & 300 \ m & 3.2 \times 10^{14} & 1.6 \times 10^{14} & 3.0 \ s \\ \hline 10^{-11} \ Torr & 7,000 \ km & 30,000 \ km & 3.2 \times 10^9 & 1.6 \times 10^9 & 84 \ hours \\ \hline \lambda: \ mean \ free \ path \\ J: \ flux \ of \ the \ atoms \ on \ sample/walls \\ t_{ML}: \ time \ to \ form \ a \ monolayer \ (ML) \ at \ sticking \ probability \ of \ 1 \\ \hline diameter \ of \ a \ gas \ atom \ \sim 3 \ x \ 10^{-8} \ cm; \ area \ of \ a \ gas \ atom \ \sim 10^{-15} \ cm^2 \\ one \ monolayer \ \sim \ 10^{15} \ atoms \ cm^{-2} \\ \hline \end{array}$	1 Torr (133 Pa)	70 µm	300 µm	3.2 ×10 ²⁰	1.6 ×10 ²⁰	3.0µs
$\label{eq:linear_state} \begin{array}{ c c c c c }\hline 10^{-6} \mbox{ Torr } & 70 \mbox{ m} & 300 \mbox{ m} & 3.2 \times 10^{14} & 1.6 \times 10^{14} & 3.0 \mbox{ s} \\\hline 10^{-11} \mbox{ Torr } & 7,000 \mbox{ km } & 30,000 \mbox{ km } & 3.2 \times 10^9 & 1.6 \times 10^9 & 84 \mbox{ hours } \\\hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	1 mTorr (0.133)	7 cm	30 cm	3.2 ×10 ¹⁷	1.6 ×10 ¹⁷	3.0 ms
$eq:linear_line$	10 ⁻⁶ Torr	70 m	300 m	3.2 ×10 ¹⁴	1.6 ×10 ¹⁴	3.0 s
λ: mean free path J: flux of the atoms on sample/walls t _{ML} : time to form a monolayer (ML) at sticking probability of 1 diameter of a gas atom ~ 3 x 10 ⁻⁸ cm; area of a gas atom ~ 10 ⁻¹⁵ cm ² one monolayer ~ 10 ¹⁵ atoms cm ⁻²	10 ⁻¹¹ Torr	7,000 km	30,000 km	3.2 ×10 ⁹	1.6 ×10 ⁹	84 hours
	λ: mean free path J: flux of the ator t _{ML} : time to form a diameter of a gas one monolayer ~	n ns on sample a monolayer s atom ~ 3 x · 10 ¹⁵ atoms o	e/walls (ML) at stickii 10 ⁻⁸ cm; area cm ⁻²	ng probabilit a of a gas ate	y of 1 om ~ 10 ⁻¹⁵ c	m ²

Plasma

Plasma parameters

- Electron density & temperature : n_e, T_e
- Ion density & temperature : n_i, T_i
- Plasma potential : V_{plasma}

- Assumptions

- Singly charged ions : $n_e \sim n_i$
- Cold ions : $T_i \ll T_e$

- For film growth we need ion flux J_i and ion energy

 $E_i \sim e(V_{substrate} - V_{plasma})$

- Fluxes (in analogy with the kinetic theory of gases)

$$J_{i,e} = \frac{n_{i,e}}{4} \frac{\overline{v_{i,e}}}{4} = \frac{n_{i,e}}{4} \sqrt{\frac{8kT_{i,e}}{\pi m_{i,e}}} = 0.4n_{i,e} \sqrt{\frac{kT_{i,e}}{m_{i,e}}}$$

	Plasm	nas: prae	ctical exa	mple	Pla	asma
$d^2[cm] = 8$	$64x10^{-6}\frac{V}{j}$	$\frac{\sqrt[3]{2}[V]}{\frac{mA}{cm^2}}$				
$\lambda_{CE} = \frac{1}{p[Pa]}$	$\frac{kT}{a\sigma[m^2]\sqrt{2}}$	c	$\sigma_{CE}^{Ar} = 4 \times 10^{-3}$	$m^{19} \left[m^2 \right] d$	Cross-section fo charge exchange collisions for Ar	e e
Sputtering system		Voltage	Current density	Sheath width	λ _{Ar}	
Diode	target	3000 V	1 mA cm ⁻²	12 mm	0.7 mm	
p _{Ar} = 70 mTorr	substrate	100 V	0.1 mA cm ⁻²	3 mm	0.7 mm	
magnetron p _{4r} = 3	target	500 V	50 mA cm ⁻²	0.5 mm	16 mm	
mTorr	substrate	100 V	1 mA cm ⁻²	0.9 mm	16 mm	
For magnet	ron sputterin	g λ _{Ar} > sheat	h width -> E _i ≈ o	e(V _{electrode} ·	– V _{plasma})	I

	JOURNA	L OF APP	LIED PH	YSICS	vo	LUME 32,	NUMBER	3	M A R C	H. 1961	Sp	outtering	
	Sputt	ering Yiel	ds of Me	tals for .	Ar+ and N	e ⁺ Ions wit	h Energi	es from 5	50 to 600	ev*†			
To this day: the most comprehens	sive set of		Mechanic	N11. al Division of	s Laegreid an General Mills, (August 2	D G. K. WEHN Incorporated, Mi 14, 1960)	ER inneapolis, Mi	nnesola					
low-energy sputtering	g yields data	Sputtering Ne ⁺ ion bon determined	g yields for p abardment w by measuring FABLE I. SJ	olycrystalline ere measured the weight le outtering y	e metal and sen in the energy r oss of spherical t elds for 28 el	ange from 50 to argets immersed ements under	ets under norn 600 ev. The y like large neg Ne ⁺ and A	mally inciden ields (atoms/ ative Langue r ⁺ ion boml	t Ar ⁺ and (ion) were uir probes bardment.				
			Ne	on					Argon				
	Target	100 (ev)	200 (ev)	300 (ev)	600 (ev)	Yield at ion e Y	t lowest nergy E (ev)	100 (ev)	200 (ev)	300 (ev)	600 (ev)		
	Be Al	0.012 0.031	0.10 0.24 0.13	0.26 0.43 0.25	0.56 0.83 0.54	0.05 0.11 0.06	80 100 80	0.074 0.11 0.07	0.18 0.35 0.18	0.29 0.65 0.31	0.80 1.24 0.53		
		0.034 0.08 0.06 0.18	0.13 0.22 0.17 0.49	0.30 0.36 0.73	0.45 0.55 1.05	0.081 0.03 0.026	100 60 40	0.081 0.11 0.30	0.22 0.31 0.67	0.33 0.41 0.87	0.58 0.70 1.30		
	Fe Co Ni	0.18 0.084 0.22	0.38 0.41 0.46	0.62 0.64 0.65	0.97 0.99 1.34	0.064 0.048 0.067	60 60 60	0.20 0.15 0.28	0.53 0.57 0.66	0.76 0.81 0.95	1.26 1.36 1.52		
	Cu Ge Zr	0.26 0.12 0.054	0.84 0.32 0.17	1.20 0.48 0.27	2.00 0.82 0.42	0.10 0.017 0.027	60 30 60	0.48 0.22 0.12	1.10 0.50 0.28	1.59 0.74 0.41	2.30 1.22 0.75		
	Nb Mo Ru	0.051 0.10 0.078	0.16 0.24 0.26	0.23 0.34 0.38	0.42 0.54 0.67	0.017 0.027 0.012	60 60 60	0.068 0.13 0.14	0.25 0.40 0.41	0.40 0.58 0.68	0.65 0.93 1.30		
	Rh Pd Ag	0.081 0.14 0.27	0.36 0.59 1.00	0.52 0.82 1.30	0.77 1.32 1.98	0.19 0.033 0.22	100 50 60	0.19 0.42 0.63	0.55 1.00 1.58	0.86 1.41 2.20	1.46 2.39 3.40		
	Hi Ta W	0.057 0.056 0.038 0.04	0.13 0.13 0.15	0.18 0.18 0.24	0.39 0.30 0.32	0.004 0.01 0.008	40 60 60	0.16 0.10 0.068	0.35 0.28 0.29 0.37	0.48 0.41 0.40	0.83 0.62 0.62		
	Os Ir	0.032 0.069	0.15 0.16 0.21	0.24 0.24 0.30	0.42 0.41 0.46 0.70	0.034 0.057 0.019 0.032	100 60	0.10	0.36 0.43 0.63	0.56 0.70	0.95		
	Au Th	0.12 0.20 0.028	0.56 0.11	0.44 0.84 0.17	1.18 0.36	0.032 0.035 0.017	50 60	0.20 0.32 0.097	1.07 0.27	1.65 0.42	2.43 (500) 0.66		
	U	0.063	0.20	0.30	0.52	0.14	+ 100	0.14	0.35	0.59	0.97		

S To this day: the most comprehensive set of low-energy sputtering yields data TABLE I. Target (ev) Be (0.040) C 0.008 Al Si 0.015 Si 0.015 Si 0.015 V (0.003) V (0.003) Nn Fe 0.030 Nn 0.028 Ge 0.010 Ni 0.028 Ge 0.010 Ni 0.028 Ge 0.010 Ni 0.028 Cu 0.045 Ge 0.010 Ni 0.028 Cu 0.045 Cu 0.045 C	puttering Y Sputtering yiel Heliu 200 (ev) (0.095) 0.005 0.005 0.005	The The Ids for 30 el	r Low Er D. R General Mills (F ements under are doubtion 600 (ev)	100 (ev)	e+-, Kr ND G. K. Group, Ma vember 2, -, and Xe urface lay Kryp 200	+-, and WEHNER inneapolis, 1961) +-ion bom ers.	Xe+-Ic Minnesola bardment.	on Bon	s in brack	nent*		
To this day: the most comprehensive set of low-energy sputtering yields data TABLE I. Target (ev) Be (0.040) Ce (0.003) Cr (0.030) Cr (0.031) Cr (0.032) Cr (0.031) Cr (0.031) Cr (0.032) Cr (0.032	Sputtering yiel 200 (ev) (0.095) 0.020 0.005 0.045	The lds for 30 el am 300 (ev) (0.15) (0.25)	D. R General Mills (H ements under are doubtion 600 (ev)	OSENBERG A 5 Electronics Received No r He ⁺ -, Kr ⁴ ful due to s 100 (ev)	AND G. K. Group, Mi vember 2, -, and Xe urface lay Kryp 200	WEHNER inneapolis, 1961) +-ion bom ers.	<i>Minnesola</i> bardment.	. Number	s in brack	kets		
100 Target (ev) Be (0.040) C 0.008 Al Si 0.015 Ti 0.010 V (0.040) Cr 0.030 Mn Fe 0.030 Co 0.015 Ni 0.028 Cu 0.045 Ge 0.010 Nb Nb Nb Nb 0.004 Qe 0.010 Ru 0.004 Pd 0.020	Heliu 200 (ev) (0.095) 0.020 0.005 0.045	am 300 (ev) (0.15)	600 (ev)	100	Kryı 200	oton			Va			
$\begin{array}{c} \mbox{Tabular} & \mbox{(c)} \\ \mbox{Be} & \mbox{(c)} & \mbox{(c)} \\ \mbox{Be} & \mbox{(c)} & \mbox{(c)} \\ \mbox{Be} & \mbox{(c)} & \mbox{(c)} \\ \mbox{Si} & \mbox{Si} \\ \mbox{Si} \\ \m$	(0.095) 0.020 0.005 0.045	(0.15)	(01)	Krypton 100 200 300 600 (ev) (ev) (ev) (ev)			Xenon 100 200 300 (ey) (ey) (ey)			600 (ev)		
Auc 0.030 Hi Tu W W W Cos (0.0005) Ir Au Th Th	0.038 0.038 0.020) 0.070 0.065 0.042 0.065 0.042 0.060 0.11 0.03 0.005) 0.015 0.057 0.057 0.005 0.057 0.005 0.057 0.005 0.005 0.001 0.002 0.001 0.002 0.004 0.0005 0.004	0.033 0.008 0.075 0.05 0.05 0.05 0.05 0.05 0.075 0.09 0.075 0.09 0.075 0.05 0.105 0.010 0.010 0.010 0.010 0.010 0.010 0.05 0.002 0.002 0.005 0.005 0.005 0.002 0.002 0.002 0.005 0.005 0.002 0.002 0.002 0.005 0.005 0.002 0.002 0.002 0.002 0.005 0.002 0.002 0.002 0.005 0.002 0.003 0.002 0.003 0.004 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.004 0.003 0.	(0.34) 0.085 0.021 0.15 0.09 0.20 0.19 0.20 0.19 0.20 0.15 0.18 0.15 0.18 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.09 0.20 0.27 0.09 0.20 0.27 0.09 0.20 0.27 0.09 0.20 0.27 0.09 0.20 0.27 0.09 0.20 0.27 0.09 0.20 0.27 0.09 0.20 0.27 0.09 0.20 0.27 0.05 0.27 0.05 0.27 0.05 0.27 0.05 0.27 0.05 0.27 0.04 0.04 0.04 0.27 0.05 0.04 0.04 0.05 0.27 0.05 0.04 0.04 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.	$\begin{array}{c} 0.03\\ 0.005\\ 0.09\\ 0.09\\ 0.05\\ 0.03\\ 0.06\\ 0.21\\ 0.11\\ 0.12\\ 0.11\\ 0.12\\ 0.08\\ 0.16\\ 0.33\\ 0.12\\ 0.03\\ 0.07\\ 0.08\\ 0.16\\ 0.33\\ 0.12\\ 0.07\\ 0.06\\ 0.12\\ 0.07\\ 0.06\\ 0.15\\ 0.42\\ 0.09\\ 0.00\\ 0.09\\ 0.00$	$\begin{array}{c} 0.17\\ 0.045\\ 0.30\\ 0.12\\ 0.16\\ 0.21\\ 0.56\\ 0.38\\ 0.38\\ 0.38\\ 0.38\\ 0.38\\ 0.38\\ 0.38\\ 0.39\\ 0.32\\ 0.45\\ 0.54\\ 0.54\\ 0.54\\ 0.54\\ 0.54\\ 0.54\\ 0.39\\ 0.33\\ 0.36\\ 0.42\\ 0.39\\ 0.36$	$\begin{array}{c} 0.24\\ 0.090\\ 0.52\\ 0.23\\ 0.23\\ 0.23\\ 0.35\\ 0.88\\ 0.69\\ 0.64\\ 0.50\\ 0.75\\ 1.42\\ 0.75\\ 1.42\\ 0.75\\ 1.42\\ 0.73\\ 0.50\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.74\\ 0.73\\ 0.66\\ 0.74\\ 0.73\\ 0.60\\ \end{array}$	$\begin{array}{c} 0.61\\ 0.18\\ 1.11\\ 0.53\\ 0.69\\ 1.50\\ 1.80\\ 1.23\\ 1.33\\ 1.50\\ 0.72\\ 0.68\\ 1.70\\ 1.45\\ 1.70\\ 1.02\\ 0.98\\ 1.02\\ 1.02\\ 1.45\\ 1.590\\ 1.45\\ 1.45\\ 1.45\\ 1.45\\ 1.45\\ 1.07\\ 1.45\\ 1.07$	$\begin{array}{c} \dots \\ 0.06\\ 0.13\\ 0.08\\ 0.06\\ 0.09\\ 0.10\\ 0.06\\ 0.03\\ 0.02\\ 0.03\\ 0.02\\ 0.03\\ 0.02\\ 0.03\\ 0$	$\begin{array}{c} 0.12\\ 0.04\\ 0.08\\ 0.13\\ 0.20\\ 0.44\\ 0.44\\ 0.44\\ 0.44\\ 0.29\\ 0.38\\ 0.37\\ 0.79\\ 0.31\\ 0.18\\ 0.37\\ 0.79\\ 0.31\\ 0.51\\ 0.32\\ 0.35\\ 0.31\\ 0.39\\ 0.52\\ 0.72\\ 1.00\\ 0.35\\ \end{array}$	$\begin{array}{c} 0.24\\ 0.08\\ 0.45\\ 0.21\\ 0.24\\ 0.35\\ 0.60\\ 0.54\\ 0.61\\ 0.71\\ 1.29\\ 0.54\\ 0.61\\ 0.71\\ 0.31\\ 0.31\\ 0.71\\ 0.31\\ 0.71\\ 1.39\\ 1.80\\ 0.55\\ 0.50\\ 0.60\\ 0.74\\ 0.86\\ 0.74\\ 0.86\\ 0.80\\ 0.74\\ 0.86\\ 0.80\\ 0.74\\ 0.86\\ 0.80\\ 0.74\\ 0.86\\ 0.80\\ 0.74\\ 0.86\\ 0.80\\$	0.42 0.21 1.02 0.50 0.50 0.72 1.30 1.30 1.40 1.30 1.44 2.44 1.20 0.71 0.61 1.48 2.44 1.20 0.71 0.61 1.48 2.44 1.20 0.71 0.61 1.48 2.44 1.00 1.106 1.48 1.48 2.44 1.00 1.106 1.48 1.48 2.44 1.00 1.106 1.48 1.48 2.44 1.00 1.00 1.48 1.48 2.44 1.00 1.00 1.48 1.48 2.44 1.00 1.40 1.48 1.48 2.44 1.48 2.44 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1	

Energetic particles in sputterdepostion Thermalization

Modeling reactive magnetron sputtering: Opportunit	ies and challenges
D. Depla*, K. Strijckmans, A. Dulmaa, F. Cougnon, R. Dedoncker, F. F. Moens, R. De Gryse Department of Solid State Sciences, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium	. Schelfhout, I. Schramm, Thin Solid Films 688 (2019) 137326
Fundamental understanding and modeling of r	eactive
sputtering processes	Thin Solid Films 476 (2005) 215-230
S. Berg [*] , T. Nyberg	
The Angstrom Laboratory, Uppsala University, Box 534, 751 21 Uppsala, Sweden	
Control of reactive sputtering processes	
W.D. Sproul ^{a,*} , D.J. Christie ^b , D.C. Carter ^b	Thin Solid Films 491 (2005) 1-17
^a Reactive Sputtering Consulting, LLC, 3324 South Lemay Avenue, Fort Collins, CO 80525, USA ^b Advanced Energy Industries, Inc., 1625 Sharp Point Drive, Fort Collins, CO 80525, USA	
A parametric model for reactive high-power	

sputtering of many insulating films e.g. AlN, AI_2O_3 , Si_3N_4 , SiO_2 etc."

Experimental verification of deposition rate Plasma Sources Sci. Technol. 30 (2021) 045006 (8pp) increase, with maintained high ionized flux fraction, by shortening the HiPIMS pulse

Bibliography
(vacuum, plasmas)
P.A. Redhead, J.P. Hobson, and E.V. Kornelsenn, <i>The Physical Basis of Ultrahigh Vacuum</i> , Chapman and Hall, London, 1968.
A. Neugebauer, "Condensation, Nucleation, and Growth of Thin Films," in <i>Handbook of Thin Film Technology</i> , edited by L.I. Maissel and R. Glang, McGraw-Hill, New York 1970.
J.E. Greene, "Physics of Film Growth from the Vapor Phase," in <i>Multicomponent and Multilayered Thin Films for Advanced Technologies: Techniques, Fundamentals, and Devices</i> , ed. by O. Auciello, NATO Advanced Study Institute, Kluwer Academic Publishers, Boston 1993, p. 39.
R. Glang, "Vacuum Evaporation," in <i>Handbook of Thin Film Technology</i> , edited by L. I. Maissel and R. Glang, McGraw-Hill, NY (1970)
G.K. Wehner and G.S. Anderson, "The Nature of Physical Sputtering" in <i>Handbook of Thin Film Technology</i> , edited by L.I. Maissel and R. Glang, McGraw-Hill, NY 1970.
B. Chapman, Glow Discharge Processes, Wiley Interscience, New York 1980.
J.A. Thornton and J.E. Greene, "Plasmas in Deposition Process," in <i>Deposition Technologies for Films and Coatings</i> , edited by R.F. Bunshah, Noayes Publications, Park Ridge, New Jersey 1994, p. 29.
S.M. Rossnagel, "Magnetron Plasma Deposition Processes," in <i>Handbook of Plasma Processing Technology</i> , edited by S.M. Rossnagel, J.J. Cuomo, and W.D. Westwood Noyes Publications, Park Ridge, New Jersey 1990.
K.H. Müller, "Film Growth Modification by Concurrent Ion Bombardment: Theory and Simulation," in <i>Handbook of Ion-Beam</i> Processing Technology, edited by J.J. Coumo, S.M. Rossnagel, and H.R. Kaufman, Noyes Publications, Park Ridge, New Jersey 1989, p. 241.
141

